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Hydrodynamic Maxwell demon in granular systems

J. Javier Brey, F. Moreno, R. Garcı´a-Rojo, and M. J. Ruiz-Montero
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Spontaneous symmetry breaking in a vibrated system confined into two connected compartments in the
absence of external fields is reported. For a small number of particles, the grains are equipartitioned, but if it
is increased beyond a critical value, the number of particles in each of the compartments becomes different in
the steady state, and the number of particles in one of the compartments decreases monotonically tending to a
given value. This phase transition is accurately described by the hydrodynamic equations for a granular gas.
The relationship with previous phenomena of phase separation in vibrofluidized granular materials is dis-
cussed.
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Granular materials exhibit a series of fascinating effe
due to their character of dissipative nonequilibrium syste
@1#. Besides, given the macroscopic size of the grains, th
effects are easy to observe experimentally in many ca
Although real granular media are composed by rough p
ticles interacting in a very complex way, it has been sho
that many of the characteristic features of their behavior
be described by means of simple mechanical models, suc
a system of smooth inelastic hard spheres.

One of the main qualitative differences between ordin
molecular systems and granular media is the strong tend
of the latter to develop spatial inhomogeneities. In fact,
elasticity and spatial gradients are coupled in any station
state of a granular fluid@2#. This property is inherent to the
dissipation of energy in collisions and, in principle, it is n
directly associated to the presence of instabilities in the s
tem. On the other hand, granular flows also present the
called clustering effect, where regions of very high dens
coexist with very dilute ones@3–5#. Clustering was first ob-
served in molecular-dynamics simulations of freely evolvi
granular fluids, and Goldhirsch and Zanetti@3# showed that it
can be explained by means of a hydrodynamic descriptio
the granular gas. In this context, it appears as a lo
wavelength hydrodynamic instability induced by a fluctu
tion of the transversal component of the velocity, i.e.,
shear mode@6#. Recently, clustering has been observed
perimentally in driven granular systems@7,8#.

Several years ago, Schlichting and Nordmeier@9# reported
the results of a simple experiment with grains indicating
behavior fundamentally different from that of a molecu
system. The experiment has been reproduced in Ref.@10#
and similar results were found. An open box is filled wi
particles of a granular material, which are brought into
fluidized state by shaking the system vertically. The box
separated into two compartments of the same section b
vertical wall of a certain height. For strong shaking, the p
ticles distribute themselves equally to both sides of the w
Nevertheless, if the intensity of the driving is lowered belo
a critical value, the spatial symmetry of the system is sp
taneously broken and the number of particles in one of
compartments becomes larger than in the other one.
asymmetry increases as the shaking intensity decreases
ticles in the low-density compartment have much larger
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ergy than those in the low-density section. For this reas
the above experiment is sometimes referred to as the M
well demon experiment.

Eggers@11# has proposed an analytical theory to expla
the existence of the above asymmetric steady state. In
approach, the interior wall separating both compartment
formally extended up to infinity and a small hole at a giv
height is introduced. Assuming that the interchange of p
ticles between the two compartments can be considered a
effusion process, the stationarity condition requiring that
net flux between the two compartments is null can be writ
down by using a simple kinetic theory for granular gas
The result is that there is a phase transition with symme
breaking determined by a parameter that depends on th
tensity of vibration, the inelasticity of collisions, and th
number of monolayers of particles at rest@11#. The theoret-
ical prediction for the bifurcation diagram compares fair
well with the results from molecular-dynamics simulatio
as well as with those from experiments@10#.

In this paper, the existence of another spontaneous s
metry breaking in vibrated granular systems is reported.
though at first sight it looks similar to the one discuss
above, both differ in several aspects. The most relevant
is that the one reported here is explained by considering
hydrodynamic stationarity conditions. This is because
symmetry breaking is observed when the linear size of
hole connecting both compartments is larger than the m
free path of the gas in its vicinity. Let us point out that in th
regime, the bifurcation reported in@9–11# disappears, indi-
cating quite dramatically the different nature of both ph
nomena. Besides, we consider a system in the absence o
external field. As a consequence of the above, the con
parameter is different in both cases. On the other hand,
important to note that neither of the two transitions has
characteristic length scale, being therefore clearly disti
from the clustering instability. Finally, we stress that, in t
present case, the pressure is uniform and the same in
compartments, showing that a pressure gradient canno
responsible for the symmetry breaking.

Let us start by describing the findings from molecula
dynamics simulations. The simulated system consists o
two-dimensional box of width 2S and heightL containingN
circular disks of massm and diameters. The box is sepa-
©2001 The American Physical Society05-1



n

c
, s
ll

st
o

le

h
t
e

s
at
th

d
2

le
ig

fr
ed

se
n

m

id-
lu-

he

me

s,
ted

ting

r

ted.
to
stic

s

ll a
ry
p

he
ter
lar-
ne
per.

BREY, MORENO, GARCI´A-ROJO, AND RUIZ-MONTERO PHYSICAL REVIEW E65 011305
rated into two compartments of the same widthS by a verti-
cal wall starting at a heighth ~see Fig. 1!. No external field is
acting on the system. The wall at the bottom is vibrated i
sawtooth way with a velocityvb . Therefore, all particles
colliding with the wall find it with that velocity@12#. Be-
sides, the amplitude of the vibration is considered mu
smaller than the mean free path of the particles next to it
that the position of the bottom can be taken as fixed. Co
sions of the particles with the walls are considered as ela
while collisions between particles are characterized by a c
stant coefficient of normal restitutiona. Keeping all the
other parameters of the system constant, we have carried
a series of simulations changing the total number of partic
N.

For small values ofN a steady state is reached in whic
the particles are equally divided into the two compartmen
When the value ofN is increased beyond a critical value, th
symmetry is spontaneously broken and the population
both sides of the wall become different in the steady st
The asymmetry of the transition can be characterized by
parametere5(N22N̄( l ))/2N, whereN̄( l ) is the time-average
number of particles in the left compartment in the stea
state. The resulting bifurcation diagram is shown in Fig.
wheree is plotted as a function ofjm , which is a dimen-
sionless quantity proportional to the total number of partic
N to be defined later on. The molecular-dynamics data in F
2 correspond toL5140s andS550s. The sizeh of the hole
has been chosen to be of the order of twice the mean
path of the gas next to it. A typical value in the report
simulations ish550s. Results for two different values ofa,
namely 0.95 and 0.9, have been included. The data are
to collapse on the same curve when plotted as a functio

FIG. 1. Sketch of the system considered in the text. The wa
the bottom is vibrated with a sawtooth velocity profile and ve
small amplitude. The two sides of the box are connected by a ga
heighth starting at the bottom of the container.
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jm . Moreover, we have verified that the bifurcation diagra
is not altered by modifying the velocity of the wallvb , as
long as it is large enough to keep the granular system flu
ized. Similar results have been obtained by numerical so
tion of the inelastic Boltzmann equation by means of t
direct simulation Monte Carlo~DSMC! method@13#. Some
of them have been included in Fig. 2 and also fit in the sa
diagram.

In order to explain what is observed in the simulation
we have used the hydrodynamic description of a vibra
granular gas of hard disks (d52) or spheres (d53). Let us
consider a dilute granular gas confined between a vibra
wall at x50 and a reflecting one atx5L, and assume there
are gradients only in thex direction. It is convenient to in-
troduce a dimensionless space variablej by

j5Aa~a!E
0

x dx8

l~x8!
, ~1!

where l5(Csd21n)21 is the local mean free path,n(x)
being the local number density, andC52A2 for d52 and
C5pA2 for d53. Moreover,

a~a!5
32~d21!pd21z* ~a!

~d13!3C2G~d/2!2@k* ~a!2m* ~a!#
. ~2!

In this expression,k* (a) and m* (a) are rather involved
functions ofa describing the heat flux in a dilute granula
gas@14#. For small inelasticity (a close to unity!, the former
can be approximated by unity and the latter can be neglec
The functionz* (a) is associated to the cooling rate due
the energy dissipation in collisions and near the ela
limit, z* (a).(21d)(12a)/2d. For x5L, j5jm

[Aa(a)Csd21Nx , with Nx being the number of particle

t

of

FIG. 2. Bifurcation diagram showing the asymmetry of t
number of particlese as a function of the dimensionless parame
jm defined in the main text. The open symbols are from molecu
dynamics simulations, and the filled ones from DSMC. The full li
is the theoretical prediction from the model developed in the pa
5-2
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HYDRODYNAMIC MAXWELL DEMON IN GRANULAR SYSTEMS PHYSICAL REVIEW E 65 011305
per unit of wall section. This is the quantity~applied to the
whole system! used in the horizontal axis in Fig. 2.

In the j scale, the temperature profileT(j) and the~uni-
form! pressurep are given by@15#

T~j!5T0Fcosh~jm2j!

coshjm
G2

, ~3!

p5
kBT0

4Csd21LAa~a!

2jm1sinh~2jm!

cosh2 jm

, ~4!

respectively. HerekB is the Boltzmann constant, taken ofte
as unity in the granular literature, andT0 denotes the tem
perature of the granular gas next to the vibrating wall. T
above expressions are closed with the equation of stap
5nkBT.

Next we model the steady state reached by the sys
illustrated in Fig. 1 by considering two independent compa
ments, sharing only a thin layer of granular gas at tempe
ture T0 located at the bottom of the container, formally atx
50. The steady state of the gas in each of the two comp
ments is accurately described by Eqs.~3! and ~4!. The hy-
drodynamic momentum equation applied to the whole s
tem requires the pressure to be the same in b
compartments, and use of Eq.~4! yields

f ~jm
( l )!5 f ~jm

(r )!, ~5!

where

f ~j!5
2j1sinh~2j!

cosh2 j
~6!

and the indexesl and r refer to the left and right compart
ment, respectively. The conservation of the total numbe
particles implies that

jm
( l )1jm

(r )52jm52Aa~a!Csd21Nx . ~7!

FIG. 3. Functionf (j) defined in Eq.~6!.
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Note that nowNx5N/2S. Of course, Eq.~5! always has the
trivial solutionjm

( l )5jm
(r )5jm , corresponding to the symme

ric state with the same number of particles in both comp
ments. In order to investigate whether there is another s
tion, one has to analyze the functionf (j) that is plotted in
Fig. 3. It has a maximum atj5j0, wherej0 is the root of the
equation j0 tanhj051. Numerically it is found thatj0
.1.20. For jm,j0, there is only the symmetric solution
while for any jm.j0, there are in addition two valuesjm

( l )

andjm
(r ) , jm

( l )Þjm
(r ) , verifying Eqs.~5! and~7!. The asymme-

try of the two populations, as measured bye, increases very
fast as the total number of particles increases beyond

FIG. 4. Density~a! and temperature~b! profiles in each of the
two compartments@~l! and (r )#, in the steady state for a system wit
jm52.03. The dashed lines are from DSMC and the solid lines
theoretical prediction derived in the text. The coordinatex is mea-
sured in units of the homogeneous mean free path, the densi
scaled with its homogeneous value,nH , and the temperature with
the initial one,T(0).
5-3
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critical value N0 determined byj05Aa(a)Csd21N0 /2S.
Even more, the steady number of particles in one of
compartments decreases when more particles are add
the system, and approaches a fixed value corresponding
very low density. This unexpected behavior, indicating
tendency of the system to keep a low-density region, plac
all the surplus particles in the high-density compartment
confirmed by the simulation results. The solid line in Fig
shows the solutions of Eq.~5! as a function ofjm . Note that,
plotted in this way, thea dependence of the theoretical pr
diction has been scaled out. A fairly good agreement betw
theory and numerical simulations is observed. Just above
critical point, i.e., for 0,jm2j0!1, the asymmetric solu
tions are described by

e56@A0~jm2j0!#1/2, ~8!

with A0.0.31, indicating a critical behavior described by t
exponentb51/2. This corresponds to a free energy of t
classical Landau form for a second-order phase transitio

We have also investigated the hydrodynamic profiles
each of the two compartments. As an example, in Fig. 4
compare the theoretical predictions for the temperature
density profiles with the results obtained by the DSM
method in one of the cases. Although similar profiles
obtained from molecular-dynamics simulations@16#, the
DSMC has the advantage of avoiding the excluded volu
effects, which are not accounted for by the hydrodynam
description we are employing, based on the Boltzmann eq
tion. The figure corresponds to a system of disks witha
50.95, andm has been used as the unit of mass, the hom
geneous mean free path,lH5L(2A2Nxs)21 as the unit of
length, and the unit of temperature is defined by the aver
kinetic energy of the initial state, namely 2kBT(0)51. In
these units, the values of the parameters in Fig. 4 arL
520, h57.5, andvb50.4, leading tojm52.03. The theo-
retical curves for the temperature have been constructe
hy

rr.
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using T0
( l ) and T0

(r ) as two fitting parameters describing th
temperature of the gas next to the vibrating wall in the l
and right compartments, respectively. Although in the si
plified theory we have developed we consideredT0

( l )5T0
(r )

5T0, and neglected the size of the common region nex
the vibrating wall, the simulation results indicate that t
state of this boundary layer is, in fact, quite complicated,
expected. The values of the measured hydrodynamic v
ables there do not correspond to the extrapolation from
bulk of the compartments. On the other hand, the theoret
density profiles do not involve any fitting parameter. T
shape of the profiles in Fig. 4 shows that the system se
gates into two different ‘‘phases.’’ While in one of the com
partments the fluid is dense and cold, in the other it is dil
and hot. As discussed above, the situation looks as if th
were a Maxwell demon determining that the number of p
ticles in one of the compartments remains very low. T
fairly good agreement between theory and simulation sho
in the figure supports the accuracy of the model.

In summary, we have identified a spontaneous symm
breaking in a vibrated granular system in the absence of
ternal fields. The phenomenon can be understood on the
sis of the hydrodynamic equations that, once again, appea
a very valuable tool to describe granular fluids, at least in
dilute limit.

A physically relevant question asks why the system ac
ally prefers the asymmetric state to the symmetric one. A
dressing this issue requires a detailed analysis of the stab
of the steady state, which will be considered elsewhere. H
we only mention that from a simple energy balance, it f
lows that the power dissipated in collisions, for a given va
of the velocity of the vibrating wall, is larger in the asym
metric stable state than in the symmetric one.
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